

<u>Lógica</u> Guía de Aprendizaje – Información al estudiante

1.Datos Descriptivos

Asignatura	Lógica
Materia	Matemáticas
Departamento responsable	Inteligencia Artificial
Créditos ECTS	6
Carácter	Básica
Titulación	Grado en Ingeniería Informática
Curso	1°
Especialidad	No aplica

Curso académico	2012-2013
Semestre en que se imparte	Ambos (Septiembre a enero y febrero a junio)
Semestre principal	Primero
ldioma en que se imparte	español
Página Web	http://web3.fi.upm.es/AulaVirtual

2.Profesorado

NOMBRE Y APELLIDO	DESPACHO	Correo electrónico
Julio García del Real Ruizdelgado	2204	juliogarcia@fi.upm.es
Josefa Z. Hernández Diego (Coord.)	2205	phernan@fi.upm.es
Luís Iraola Moreno	2201	luis.iraola@upm.es
Andrei Paun	2201	apaun@fi.upm.es
David Pearce	2204	david.pearce@upm.es
David Pérez del Rey	2210	dperezdelrey@fi.upm.es
Víctor Rodríguez Doncel	3205	vrodriguez@fi.upm.es
Petr Sosik	2201	psosik@fi.upm.es
Damiano Zanardini	2205	damiano@fi.upm.es

3. Conocimientos previos requeridos para poder seguir con normalidad la asignatura

Asignaturas superadas	•
Otros resultados de aprendizaje necesarios	•

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

4. Objetivos de Aprendizaje

COMPETENCIAS ASIGNADAS A LA ASIGNATURA Y SU NIVEL DE ADQUISICIÓN			
Código	Código Competencia		
CE-1	Conocer profundamente los cimientos esenciales y fundacionales de la informática, abarcando tanto conceptos y teorías abstractas como los valores y los principios profesionales, subrayando los aspectos esenciales de la disciplina que permanecen inalterables ante el cambio tecnológico.	С	
CE-2	Formalización y la especificación de problemas reales cuya solución requiere el uso de la informática		
CE-3 Capacidad de elegir y usar los métodos analíticos y de modelización relevantes CE-4 Capacidad para describir una solución de forma abstracta		С	
		С	

LEYENDA: Nivel de adquisición C: conocimiento

Nivel de adquisición P: comprensión Nivel de adquisición A: aplicación Nivel de adquisición S: análisis y síntesis

COMPETENCIAS ASIGNADAS A LA ASIGNATURA Y SU NIVEL DE ADQUISICIÓN			
Código Competencia		Nivel	
CG1/21	Capacidad de resolución de problemas aplicando conocimientos de matemáticas, ciencias e ingeniería.	Básico	

ı	RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA				
Código	Resultado de aprendizaje	sultado de aprendizaje cias asociadas		Resultado de aprendizaje cias adqu	
RA1	Representar conocimiento por medio de sistemas formales	CE-1, CE-2, CE-4, CG1/21	2		
RA2	Ser capaz de demostrar teoremas mediante lógica matemática	CE-1, CE-3, CG1/21	3		
RA3	Ser capaz de utilizar algoritmos y estrategias para la demostración automática	CE-2, CE-3, CG1/21	3		
RA4	Modelizar matemáticamente problemas reales y conocer las técnicas para resolverlos	CE-3, CE-4, CG1/21	1		

5. Sistema de evaluación de la asignatura

	INDICADORES DE LOGRO				
Ref	Indicador	Relaciona- do con RA			
11	Definir lenguajes para el cálculo de proposiciones y predicados	RA1			
12	Emplear lenguajes formales para representar conocimiento expresado en lenguaje natural.	RA1			
13	Analizar el significado de fórmulas y teorías en términos de condiciones de verdad.	RA2			
14	Construir modelos y contra-modelos para teorías y argumentos.	RA2			
15	Demostrar la validez lógica de fórmulas mediante análisis semántico formal.	RA2			
16	Conocer diversos teoremas que facilitan la demostración en deducción natural.				
17	Demostrar teoremas mediante deducción natural	RA2			
18	Aplicar los conceptos metalógicos fundamentales al cálculo de proposiciones y predicados	RA2			
19	Normalizar fórmulas y teorías en forma clausular	RA3			
l10	Aplicar los conceptos de universo e interpretación de Herbrand a fórmulas y teorías	RA3			
l111	Aplicar interpretaciones abstractas al análisis de la insatisfacibilidad de fórmulas y teorías	RA3			
l12	Conocer y aplicar el teorema de Herbrand y sus implementaciones				
l13	Aplicar unificación máximamente general a términos y fórmulas.	RA3			
l14	Emplear un cálculo basado en resolución con unificación.	RA3			
l15	Aplicar diversas estrategias de optimización y mejora del cálculo de resolución	RA3			

	INDICADORES DE LOGRO			
Ref	Indicador	Relaciona- do con RA		
I16	Relacionar la sintaxis de Prolog puro con la sintaxis clausular.	RA4		
117	Relacionar resolución con unificación con la ejecución de Prolog puro.	RA4		

EVALUACION SUMATIVA				
Breve descripción de las actividades evaluables	Momento	Lugar	Peso	
Examen sobre la unidad 1	S5	Aulas asignadas	17,5%	
Examen sobre la unidad 2	S9	Aulas asignadas	17,5%	
Examen sobre la unidad 3	S12	Aulas asignadas	17,5%	
Examen sobre la unidad 4	S16	Aulas asignadas	17,5%	
Resolución y entrega de ejercicios propuestos a grupos de trabajo en clase y a través de Aula Virtual	En cualquier momento	Aulas asignadas y aula virtual	30%	
Total: 100%				

EVALUACION SUMATIVA DE COMPETENCIAS TRANSVERSALES					
CÓDIGO COMPETENCIA TRANSVERSAL	Breve descripción de las actividades evaluables	Momento	Lugar	Peso en la calif.	
CG1/21	Examen sobre la unidad 1	S5	Aulas asignadas	17,5%	
CG1/21	Examen sobre la unidad 2	S9	Aulas asignadas	17,5%	

EVALUACION SUMATIVA DE COMPETENCIAS TRANSVERSALES					
CÓDIGO COMPETENCIA TRANSVERSAL	Breve descripción de las actividades evaluables	Momento	Lugar	Peso en la calif.	
CG1/21	Examen sobre la unidad 3	S12	Aulas asignadas	17,5%	
CG1/21	Examen sobre la unidad 4	S16	Aulas asignadas	17,5%	
CG1/21	Resolución y entrega de ejercicios propuestos a grupos de trabajo en clase y a través de Aula Virtual	En cualquier momento	Aulas asignadas y aula virtual	30%	
Total: 100°			l: 100%		

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

CRITERIOS DE CALIFICACIÓN

Se describen a continuación los criterios de evaluación para los sistemas de evaluación considerados en la asignatura. El Sistema de evaluación continua será el que se aplicará con carácter general a todos los estudiantes que cursen la asignatura. La guía de aprendizaje se centra por tanto en este sistema y detalla sus actividades de evaluación en los apartados "Evaluación sumativa" y "Cronograma de la asignatura". Las actividades de evaluación del "Sistema de evaluación mediante sólo prueba final" y del periodo extraordinario no forman parte de esos apartados y se describen exclusivamente en este apartado de "Criterios de Evaluación".

Sistema de evaluación continua:

La nota final de la asignatura de Lógica se calcula a partir de los resultados obtenidos en diversas pruebas, individuales y de grupo, asociadas a dos bloques temáticos, divididos a su vez en dos unidades cada uno. En el caso general, la nota final será la media aritmética de las notas obtenidas en los dos bloques temáticos de la asignatura, y para aprobar la asignatura será necesario que dicha media sea mayor o igual a 5 sobre 10 y que la nota de cada bloque sea mayor o igual a 3. Pero si se aprueba un bloque y el otro tiene una nota inferior a 3, la nota final de la asignatura será la del bloque suspenso. Si un alumno no aprueba la asignatura, pero sí uno de sus bloques, dicho bloque se mantendrá liberado hasta la convocatoria extraordinaria de ese curso.

La nota de un bloque temático es la media aritmética de las notas obtenidas en las dos unidades que lo componen. La nota de una unidad se calcula a partir de la nota individual (NI), obtenida en un examen, y la nota de grupo (NG) del alumno en esa unidad, obtenida a partir de los resultados de participación en clase y los trabajos de grupo correspondientes a la unidad.

En general, en el cálculo de la nota final de una unidad (NFU) el peso de las NI y NG es 70% y 30%, respectivamente. Sin embargo, si NI < 5 y NI < NG el peso de NI aumentará y el de NG disminuirá en proporción directa a la diferencia entre NI y NG.

La forma concreta de hacer el cálculo es la siguiente:

```
Si NI \geq 5 entonces NFU = NI*0,7 + NG*0,3

Si NI < 5 entonces

Si NG \leq NI entonces NFU = NI*0,7 + NG*0,3

Si NG > NI entonces NFU = NI*(0,7 + 0,3*F) + NG*(1 - (0,7 + 0,3*F))

donde F = \frac{NG-NI}{NG}
```

No habrá prueba final ordinaria al final del semestre para los alumnos acogidos a este tipo de evaluación. Sin embargo, todos los alumnos tendrán la posibilidad, al finalizar el semestre, de volver a examinarse de una de las cuatro unidades del temario. Con el resultado de este examen se calculará nuevamente la nota final de la asignatura.

Los alumnos que no aprueben la asignatura por evaluación continua podrán presentarse al examen final, de la convocatoria extraordinaria de julio, para ser evaluados sobre el contenido de un bloque, si tienen el otro liberado, o sobre toda la asignatura.

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

Sistema de evaluación mediante sólo prueba final:

En la convocatoria ordinaria, la elección entre el sistema de evaluación continua o el sistema de evaluación mediante sólo prueba final corresponde al estudiante. Quien desee seguir el sistema de evaluación mediante sólo prueba final, deberá OBLIGATORIAMENTE comunicarlo DURANTE LOS 15 PRIMEROS DÍAS a contar desde el inicio de la actividad docente de la asignatura, mediante escrito dirigido al Sr. Jefe de Estudios, según modelo proporcionado por Secretaría de Alumnos, que se entregará dentro del plazo establecido y a través del Registro de dicha Secretaría.

Esta solicitud sólo se considerará a los efectos del semestre en curso. En posteriores semestres deberá necesariamente ser cursada de nuevo.

No obstante lo anterior, cuando exista causa sobrevenida y de fuerza mayor que justifique el cambio del proceso de evaluación , el estudiante que haya optado (por omisión) por el sistema de evaluación continua podrá solicitar al Tribunal de la Asignatura ser admitido en los exámenes y actividades de evaluación que configuran el sistema de evaluación mediante sólo prueba final. El tribunal de la asignatura, una vez analizadas las circunstancias que se hagan constar en la solicitud, dará respuesta al estudiante con la mayor antelación a la celebración del examen final que sea posible.

Dicha prueba final se realiza al final del semestre y consta de un único examen sobre el contenido de toda la asignatura, organizado en dos bloques. La asignatura se supera sólo si la media aritmética de las notas obtenidas en los dos bloques temáticos es mayor o igual a 5 sobre 10 y la nota de cada bloque es mayor o igual a 3. Si se aprueba un bloque y el otro tiene una nota inferior a 3, la nota final de la asignatura será la del bloque suspenso. Si un alumno no aprueba la asignatura, pero sí uno de sus bloques, dicho bloque se mantendrá liberado hasta la convocatoria extraordinaria de ese curso.

Los alumnos que no aprueben la asignatura mediante esta prueba podrán presentarse al examen final, de la convocatoria extraordinaria de julio, para ser evaluados nuevamente sobre el contenido de un bloque, si tienen el otro liberado, o sobre toda la asignatura.

Sistema de evaluación para la convocatoria extraordinaria de julio:

Los alumnos que no aprueben la asignatura, mediante cualquiera de los dos sistemas de evaluación anteriores, podrán optar por realizar un examen extraordinario en julio, para ser evaluados nuevamente sobre el contenido de un bloque, si tienen el otro liberado, o sobre toda la asignatura. Este examen será único, sobre el contenido de toda la asignatura, y estará organizado en dos bloques. La asignatura se supera sólo si la media aritmética de las notas obtenidas en los dos bloques temáticos es mayor o igual a 5 sobre 10 y la nota de cada bloque es mayor o igual a 3. Si se aprueba un bloque y el otro tiene una nota inferior a 3, la nota final de la asignatura será la del bloque suspenso.

FACULTAD DE INFORMÁTICA Campus de Montegancedo Boadilla del Monte. 28660 Madrid

6. Contenidos y Actividades de Aprendizaje

CONTENIDOS ESPECÍFICOS				
Unidad	Apartado	Indicadores relacionados		
	1.1 Lenguajes proposicionales: sintaxis y uso en la formalización de argumentos.	l1, l2		
	1.2 Semántica formal: Funciones de verdad, tautologicidad, consecuencia lógica.	13, 15		
Unidad 1: Lógica proposicional	1.3 Razonamiento semántico: definición de modelos y contra-modelos	14, 15		
	1.4 Cálculo de deducción natural proposicional	I6, I7		
	1.5 Conceptos metalógicos fundamentales de los sistemas formales proposicionales	18		
	2.1 Lenguajes de primer orden: sintaxis y uso en la formalización de conocimiento	l1, l2		
	2.2 Semántica formal: Estructuras, validez formal, consecuencia lógica.	13, 15		
Unidad 2: Lógica de primer orden	2.3 Razonamiento semántico: definición de modelos y contra-modelos	14, 15		
	2.4 Cálculo de deducción natural de primer orden	16, 17		
	2.5 Conceptos metalógicos fundamentales de los sistemas formales de primer orden	18		
Unidad 3: Bases	3.1 Forma normal de Skolem. Forma clausular	19		
teóricas de la	3.2 Interpretaciones de Herbrand	I10, I11		
demostración automática	3.3 Teorema de Herbrand. Implementaciones del teorema de Herbrand	l11, l12		
Unidad 4: Resolución.	4.1 Sustitución y unificación máximamente general	l13		
Fundamentos de la programación	4.2 Cálculo de resolución con unificación	l14		
lógica	4.3 Estrategias de resolución, resolución SLD	l15		

4.4 Sintaxis Prolog y sintaxis clausular	I16
4.5 Ejecución de Prolog puro; extracción de respuestas	l17

6.Breve descripción de las modalidades organizativas utilizadas y de los métodos de enseñanza empleados

Table 7. Modelidades organizativas de la enseñanza				
MODALIDADES ORGANIZATIVAS DE LA ENSEÑANZA				
Escenario	Finalidad			
	Clases Teóricas	Hablar a los estudiantes		
	Seminarios-Talleres	Construir conocimiento a través de la interacción y la actividad de los estudiantes		
88 \$ 6 \$ 49.8	Clases Prácticas	Mostrar a los estudiantes cómo deben actuar		
	Prácticas Externas	Completar la formación de los alumnos en un contexto profesional		
	Tutorías	Atención personalizada a los estudiantes		
525	Trabajo en grupo	Hacer que los estudiantes aprendan entre ellos		
	Trabajo autónomo	Desarrollar la capacidad de autoaprendizaje		

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

	do emseñanza

Tabla 9. Métodos de enseñanza					
MÉTODOS DE ENSEÑANZA					
Método Finalidad					
	Método Expositivo/Lección Magistral	Transmitir conocimientos y activar procesos cognitivos en el estudiante			
••••	Estudio de Casos	Adquisición de aprendizajes mediante el análisis de casos reales o simulados			
	Resolución de Ejercicios y Problemas	Ejercitar, ensayar y poner en práctica los conocimientos previos			
₽	Aprendizaje Basado en Problemas (ABP)	Desarrollar aprendizajes activos a través de la resolución de problemas			
	Aprendizaje orientado a Proyectos	Realización de un proyecto para la resolución de un problema, aplicando habilidades y conocimientos adquiridos			
\times	Aprendizaje Cooperativo	Desarrollar aprendizajes activos y significativos de forma cooperativa			
	Contrato de Aprendizaje	Desarrollar el aprendizaje autónomo	t		

Se conoce como método expositivo "la presentación de un tema lógicamente estructurado con la finalidad de facilitar información organizada siguiendo criterios adecuados a la finalidad pretendida". Esta metodología -también conocida como lección (lecture)- se centra fundamentalmente en la exposición verbal por parte del profesor de los contenidos sobre la materia objeto de estudio. El término "lección magistral" se suele utilizar para denominar un tipo específico de lección impartida por un profesor en ocasiones especiales.

Análisis intensivo y completo de un hecho, problema o suceso real con la finalidad de conocerlo, interpretarlo, resolverlo, generar hipótesis, contrastar datos, reflexionar, completar conocimientos, diagnosticarlo y, en ocasiones, entrenarse en los posibles procedimientos alternativos de solución.

Situaciones en las que se solicita a los estudiantes que desarrollen las soluciones adecuadas o correctas mediante la ejercitación de rutinas, la aplicación de fórmulas o algoritmos, la aplicación de procedimientos de transformación de la información disponible y la interpretación de los resultados. Se suele utilizar como complemento de la lección magistral.

Método de enseñanza-aprendizaje cuyo punto de partida es un problema que, diseñado por el profesor, el estudiante ha de resolver para desarrollar determinadas competencias previamente definidas.

Método de enseñanza-aprendizaje en el que los estudiantes llevan a cabo la realización de un proyecto en un tiempo determinado para resolver un problema o abordar una tarea mediante la planificación, diseño y realización de una serie de actividades, y todo ello a partir del desarrollo y aplicación de aprendizajes adquiridos y del uso efectivo de recursos.

Enfoque interactivo de organización del trabajo en el aula en el cual los alumnos son responsables de su aprendizaje y del de sus compañeros en una estrategia de corresponsabilidad para alcanzar metas e incentivos grupales.

Es tanto un método, a utilizar entre otros, como un enfoque global de la enseñanza, una filosofía.

Un acuerdo establecido entre el profesor y el estudiante para la consecución de unos aprendizajes a través de una propuesta de trabajo autónomo, con una supervisión por parte del profesor y durante un período determinado. En el contrato de aprendizaje es básico un acuerdo formalizado, una relación de contraprestación recíproca, una implicación personal y un marco temporal de ejecución.

BREVE DESCRIPCIÓN DE LAS MODALIDADES ORGANIZATIVAS				
UTILIZADAS Y METODOS DE ENSEÑANZA EMPLEADOS				
CLASES DE TEORIA	Durante una clase de teoría o lección magistral, el profesor realiza una exposición verbal de los contenidos sobre la materia objeto de estudio, mediante la cual suministra a los alumnos información esencial y organizada procedente de diversas fuentes con unos objetivos específicos predefinidos (motivar al alumno, exponer los contenidos sobre un tema, explicar conocimientos, efectuar demostraciones teóricas, presentar experiencias, etc.) pudiendo utilizar para ello, además de la exposición oral, otros recursos didácticos (audiovisuales, documentos, etc).			
CLASES DE PROBLEMAS	Este método de enseñanza se utiliza como complemento de la clase de teoría (lección magistral) y se basa en solicitar a los estudiantes que desarrollen las soluciones adecuadas o correctas mediante la ejercitación de rutinas, la aplicación de fórmulas o algoritmos, la aplicación de procedimientos de transformación de la información disponible y la interpretación de los resultados. La intención principal es la de aplicar lo ya aprendido para favorecer la comprensión tanto de la importancia como del contenido de un nuevo tema, afianzar conocimientos y estrategias y su aplicación en las situaciones prácticas que se planteen.			
PRÁCTICAS				
TRABAJOS AUTONOMOS				
TRABAJOS EN GRUPO	Se plantean diversos ejercicios, sobre conocimientos recientemente adquiridos, a grupos reducidos de estudiantes con la finalidad de que se refuerce el aprendizaje de los mismos a través de la discusión y puesta en común			
TUTORÍAS				

7. Recursos didácticos

RECURSOS DIDÁCTICOS				
	Manzano M. y Huertas A. "Lógica para principiantes"			
	Deaño, A. "Introducción a la lógica formal"			
	Tymoczko y Henle "Razón, Dulce Razón"			
BIBLIOGRAFÍA	García Serrano, A. "Lógica Informática. Teorías de primer orden"			
	Bueno Carrillo, F. "Introducción a la demostración automática de teoremas", Publicaciones FIM			
	Barwise J., Etchemendy J. "Language, Proof and Logic".			
	Página web de la asignatura			
RECURSOS WEB	(http://web3.fi.upm.es/AulaVirtual/)			
1120011000 1120	Sitio Moodle de la asignatura			
	(http://web3.fi.upm.es/AulaVirtual/)			
EQUIPAMIENTO	Aula con cañón proyector de transparencias			
	Sala de trabajo en grupo			

8. Cronograma de trabajo de la asignatura

Semana	Actividades en Aula	Trabajo Individual	Trabajo en Grupo	Actividades de Evaluación
Semana 1 (9 horas)	 CT: explicación de contenidos de la unidad 1 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	•	•
Semana 2 (9 horas)	 CT: explicación de contenidos de la unidad 1 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Entrega de ejercicios sobre la unidad 1
Semana 3 (9 horas)	 CT: explicación de contenidos de la unidad 1 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Entrega de ejercicios sobre la unidad 1
Semana 4 (11 horas)	 CT: explicación de contenidos de la unidad 1 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Trabajo en grupo. Unidad 1 (2 h.)
Semana 5 (11 horas)	 CT: explicación de contenidos de la unidad 2 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (5 h.)	Resolución de ejercicios propuestos en clase	Prueba individual (1 h.): Unidad 1
Semana 6 (9 horas)	 CT: explicación de contenidos de la unidad 2 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Entrega de ejercicios sobre la unidad 2
Semana 7 (9 horas)	 CT: explicación de contenidos de la unidad 2 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Entrega de ejercicios sobre la unidad 2

Semana 8 (11 horas)	 CT: explicación de contenidos de la unidad 2 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Trabajo en grupo. Unidad 2 (2 h.)
Semana 9 (11 horas)	 CT: explicación de contenidos de la unidad 3 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (5 h.)	Resolución de ejercicios propuestos en clase	Prueba individual (1 h.): Unidad 2
Semana 10 (9 horas)	 CT: explicación de contenidos de la unidad 3 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Entrega de ejercicios sobre la unidad 3
Semana 11 (11 horas)	 CT: explicación de contenidos de la unidad 3 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Trabajo en grupo. Unidad 3 (2 h.)
Semana 12 (11 horas)	 CT: explicación de contenidos de la unidad 3 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (5 h.)	Resolución de ejercicios propuestos en clase	Prueba individual (1 h.): Unidad 3
Semana 13 (9 horas)	 CT: explicación de contenidos de la unidad 4 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Entrega de ejercicios sobre la unidad 4
Semana 14 (9 horas)	 CT: explicación de contenidos de la unidad 4 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Entrega de ejercicios sobre la unidad 4
Semana 15 (11 horas)	 CT: explicación de contenidos de la unidad 4 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (4 h.)	Resolución de ejercicios propuestos en clase	Trabajo en grupo. Unidad 4 (2 h.)
Semana 16 (11 horas)	 CT: explicación de contenidos de la unidad 4 (2,5 h.) CP: resolución de ejercicios (2,5 h). 	Estudio y ejercicios de auto- comprobación (5 h.)		Prueba individual (1 h.): Unidad 4

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

Nota: Para cada actividad se especifica la dedicación en horas que implica para el alumno. Esta distribución de esfuerzos debe entenderse para el "estudiante medio", por lo que si bien puede servir de orientación, no debe tomarse en ningún caso en sentido estricto a la hora de planificar su trabajo. Cada alumno deberá hacer su propia planificación para alcanzar los resultados de aprendizaje descritos en esta Guía y ajustar dicha planificación en un proceso iterativo en función de los resultados intermedios que vaya obteniendo.

